NEW CHESAPEAKE BAY BMPS

WEST VIRGINIA STORMWATER WORKSHOP

JANUARY 12, 2021

Contest Closes February 5, 2021 www.chesapeakestormwater.net/the-bubbas

What's New This Year?

New Category:

Innovations in Stormwater Permit Implementation

New Grand Prize Category: "Small but Mighty"

WHAT WE'LL COVER

Conservation Landscaping

- 3 Flavors of Tree BMPs
- Outfall and Gully Stabilization Protocol
- New Stream and Floodplain Guidance

CONSERVATION LANDSCAPING AS A BAY BMP

APPROVED: AUGUST 2018

REPORT: HTTPS://CHESAPEAKESTORMWATER.NET/DOWNLOAD/8886/

BACKGROUND: CREDITING HOMEOWNER BMPS

- 2014 Report ties
 homeowner practices
 to existing approved
 BMPs
- Allows aggregated homeowner BMP reporting
- Shorter credit but streamlined verification

Table 1 Link Between Expert Panel Reports and Homeowner BMPs Credits			
Individual BMP	Status	Notes	
Rain Garden	Approved	Define DA and rainfall depth treated by each	
Rain Barrel	Approved	individual practice and then use the retrofit	
Permeable Pavement	Approved	adjustor curves of expert panel for on-site retrofits	
Downspout Disconnection	Approved		
UNM Pledge 1	Approved	Define turf area (TA) and associated removal rates	
UNM Plan, Hi Risk ²	Approved	based on risk factor for each individual urban nutrient management plan or pledge, as specified in expert panel report	
Conservation Landscaping 3	None	Convert turf to meadow	
Tree Planting	Interim/ Pending	Interim rate exists for sf of tree canopy, but an expert panel is expected to modify rate in 2104	
Impervious Cover Removal 4	N/A	Impervious cover converted to pervious cover	

WHY CONSERVATION LANDSCAPING?

- Pervious lands comprise nearly 10% of the total watershed area of the Chesapeake Bay, of which about 80% is specifically devoted to home lawns
- Compared to managed turf, conservation landscapes:
 - Have no fertilizer inputs
 - Help decompact the urban soils
 - Provide native habitat and wildlife corridors
 - Reduce long term maintenance compared to mowing
 - Look great!

CONSERVATION LANDSCAPING BMP

Conservation Landscapes:

- Convert turf to perennial meadow (native landscaping)
- The landscaping areas are slightly depressed so they can hold rainfall
- Are designed to provide habitat for birds and pollinators
- Has a maintenance plan to arrest succession

POLLUTANT REMOVAL

Table 1. Summary of Pollutant Load Reductions from Conservation Landscapes.

	TN	ТР	TSS
Removal Rate	39%	25%	0%

Option I: Credit for the converted area only

Option 2: Credit for converted area + Impervious run-on (w/ 2 x CL area cap)

REPORTING/VERIFYING

Individual conservation landscapes can be aggregated

Inspect every 5 years

> Can be self-reported photos from homeowners of key indicators

> Can be inspect randomized subset (10%) at county-scale

URBAN TREE PLANTING BMPS

APPROVED: SEPTEMBER 2016

CANOPY AND FORESTRY REPORT: <u>HTTP://CHESAPEAKESTORMWATER.NET/DOWNLOAD/7222/</u>

RIPARIAN BUFFER REPORT: <u>HTTPS://CHESAPEAKESTORMWATER.NET/DOWNLOAD/9065/</u>

Through the Chesapeake Bay Watershed Agreement, the Chesapeake Bay Program has committed to...

Vital Habitats Goal

Tree Canopy Outcome: Continually increase urban tree canopy capacity to provide air quality, water quality and habitat benefits throughout the watershed. **Expand urban tree canopy by 2,400 acres by 2025.**

THE MANY TREE BMPS:

- I. Urban Tree Canopy
- 2. Urban Forest Planting
- 3. Riparian Buffer Planting

Urban Tree BMPs approved for Chesapeake TMDL

1. Urban Tree Planting - Canopy

Definition	 Trees planted on developed land (turf grass or impervious) that result in an increase in tree canopy Not intended to result in forest-like conditions/understory For reporting, 300 trees planted is equivalent to I acre
Efficiency Credited	Land use change to Tree Canopy over Turf or Tree Canopy over Impervious
Credit Expiration	10 years, then it is picked up in land cover data

Urban Tree BMPs approved for Chesapeake TMDL

2. Urban Forest Planting

Definition	 Trees planted in a contiguous area to establish forest- like conditions (no minimum size) No fertilization and minimal mowing to aid tree and understory establishment Required planting and maintenance plan that meets any State or District standards for forest establishment
Efficiency Credited	Land use change to Forest (lowest loading land use)
Credit Expiration	15 years, then it is picked up in land cover data

Urban Tree BMPs approved for Chesapeake TMDL

3. Urban Forest Buffer

Definition	 Forest buffers are linear wooded areas along waterbodies that help filter nutrients, sediments and other pollutants Recommended buffer width is 100 feet, with a 35 feet minimum width
Efficiency Credited	Land use change to Forest, plus each acre reported receives a load reduction/efficiency credit on one upland acre:TN: 25%,TP 50%,TSS: 50%
Credit Expiration	10 years, then practice must be verified to maintain the efficiency credit

It's not just about planting...

OUTFALL AND GULLY STABILIZATION

APPROVED: OCTOBER 2019

FULL REPORT: HTTPS://CHESAPEAKESTORMWATER.NET/DOWNLOAD/9714/

HISTORY OF CBP STREAM RESTORATION CREDITING

- Expert Panel Report approved in 2013
- Report was revised after a "testdrive" period in 2014
- Changes in how streams and sediment are simulated in Phase 6 watershed model in 2017
- USWG approves SR Protocol FAQ document in early 2018
- 5 Groups formed to revisit Protocols in mid-2018

	Group I (Verification)	
Name	Affiliation	
Rich Starr	Ecosystem Planning and Restoration	
Kathy Hoverman	KCI	
Tim Schueler	Hazen and Sawyer	
Kip Mumaw	Ecosystem Services	
Neely Law	Center for Watershed Protection	
Meghan Fellows	Fairfax County, DPWES	
Sandra Davis	US Fish and Wildlife Service	
Jennifer Rauhofer	Stormwater Management Consulting	
Josh Burch	DOEE	
Scott Cox	PADEP	

Table 1. Membership for Group 3			
Name	Affiliation		
Drew Altland	RKK		
Lisa Fraley-McNeal	Center for Watershed Protection		
Joe Berg	Biohabitats		
Rich Starr	Ecosystem Planning and Restoration		
Josh Running	Stantec		
Matt Meyers	Fairfax County, VA DPWES		
Bill Brown	PADEP		
Jeff White	MDE		
Josh Burch	DOEE		
Reid Cook	RES Consultants		
Aaron Blair	EPA		
Tess Thompson	Virginia Tech		
Joe Sweeney	Water Science Institute		

NameAffiliationRay BahrMDEStephen ReilingDOEETracey HarmonVDOTBrock ReggiVADEQKaren CoffmanMDOT SHARyan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Table 1: Outfall Restoration Crediting Team			
Ray BahrMDEStephen ReilingDOEETracey HarmonVDOTBrock ReggiVADEQKaren CoffmanMDOT SHARyan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Name	Affiliation		
Stephen ReilingDOEETracey HarmonVDOTBrock ReggiVADEQKaren CoffmanMDOT SHARyan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Ray Bahr	MDE		
Tracey HarmonVDOTBrock ReggiVADEQKaren CoffmanMDOT SHARyan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Stephen Reiling	DOEE		
Brock ReggiVADEQKaren CoffmanMDOT SHARyan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Tracey Harmon	VDOT		
Karen CoffmanMDOT SHARyan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Brock Reggi	VADEQ		
Ryan ColeMDOT SHA (alternate)Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Karen Coffman	MDOT SHA		
Elizabeth OttingerUS EPA Region 3Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Ryan Cole	MDOT SHA (alternate)		
Carrie Traver/Aaron BlairUS EPA Region 3Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Elizabeth Ottinger	US EPA Region 3		
Alison SantoroMD DNRTed BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Carrie Traver/Aaron Blair	US EPA Region 3		
Ted BrownBiohabitatsChris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Alison Santoro	MD DNR		
Chris StoneLoudoun County, VAErik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Ted Brown	Biohabitats		
Erik MichelsenAnne Arundel CountyNeil WeinsteinLID Center	Chris Stone	Loudoun County, VA		
Neil Weinstein LID Center	Erik Michelsen	Anne Arundel County		
	Neil Weinstein	LID Center		
Nick Noss PA Turnpike Commission	Nick Noss	PA Turnpike Commission		

Table 1. Roster for Group 4			
Name	Affiliation		
Joe Berg	Biohabitats		
Drew Altland	RKK		
Bill Stack	CWP		
Scott Lowe	McCormick Taylor		
John Hottenstein	Bayland Consultants		
Jeremy Hanson	Virginia Tech		
Sujay Kaushal	University of Maryland		
Joel Moore	Towson University		
Jens Geratz	Anne Arundel County DPW		
Sean Crawford	Bayland Consultants		
Josh Burch	DOEE		
Jeff Hartranft	PADEP BWEW		
Denise Clearwater	MDE Wetlands and Waterways		
Paul Mayer	EPA Region ORD		
Durelle Scott	Virginia Tech		
Greg Noe	USGS		
Chris Becraft	Underwood and Assoc		

THE STREAM RESTORATION PROTOCOLS

I. Prevented sediment

3. Floodplain reconnection

2. In-stream denitrification

4. The "tweener" Dry Channel RSC

PRIMARY PURPOSE

Addressing erosion driven by vertical incision.

Often caused by:

- Uncontrolled runoff upstream,
- Migrating nick points,
- Poor slope stabilization or energy dissipation structures.

Figure 2. Examples of Severe Outfall Erosion in the Headwater Transition Zone

WHAT IS THE OUTFALL AND GULLY STABILIZATION PROTOCOL?

- Is a new way of calculating prevented sediment for restoration projects addressing channel erosion driven by vertical incision
- Is NOT a new design approach
- Creates a new "Protocol 5"
- Cannot be combined with Protocol I
- Can be combined with Protocols 2, 3 and 4.

USING THE OGSP PROTOCOLS IN PERENNIAL/INTERMITTENT STREAMS

 Protocol should primarily be applied in the Headwater Transition Zone, not the perennial or intermittent stream network

In channels degrading primarily due to vertical headcut incision, stricter qualifying conditions apply:

- > The project MUST meet the more stringent QCs
- The project MUST NOT introduce barriers or challenges to aquatic organism passage or degrade instream habitat

FLOODPLAIN RECONNECTION (PROTOCOLS 2 & 3)

APPROVED: OCTOBER 2020

FULL REPORT: HTTPS://CHESAPEAKESTORMWATER.NET/DOWNLOAD/10032/

THE STREAM RESTORATION PROTOCOLS

I. Prevented sediment

3. Floodplain reconnection

2. In-stream denitrification

4. The "tweener" Dry Channel RSC

GUIDING PRINCIPLES

- Ensure tweaks are Phase 6 watershed model compatible (e.g., delivery, new stream source)
- Retain the integrity of the pollutant removal protocols, but tweak based on:
 - Better science to define removal parameters (e.g., unit denitrification rate)
 - Field testing of most sensitive parameters in load calculations
 - More defensible methods to define boundaries over which the removal processes operate

THE RECOMMENDATIONS

> Definitions and qualifying conditions for two flavors of floodplain restoration: LSR and RSB

NEW QUALIFYING CONDITIONS

- Keep all the original qualifying conditions from the Expert Panel report (2014)
- For LSR and RSB:
- I. Project must meet applicable floodplain management requirements in the stream corridor
- 2. Project must evaluate the duration of floodplain ponding in the context of the restoration goals
- 3. Project must demonstrate consideration of potential unintended consequences of the restoration (Outlined in Section 7).

THE RECOMMENDATIONS

Protocol 2:

- Replace the existing Hyporheic Box with an area-based "Effective Hyporheic Zone".
- Replace the existing denitrification rate $(1.95 \times 10^{-4} \text{ lbs/ton/day})$ with a new rate $(2.69 \times 10^{-3} \text{ lbs NO}_3/\text{sq} \text{ ft/year})$ and adjust it based on site factors
- Eliminate the bank height ratio (≤1) requirement, since these don't typically apply to most low-bank FR projects.

Flood Plain Trapping Zone (FTZ)

Table 10: Site Specific Discount Factors for Adjusting the Denitrification Rate(Parola et al, 2019)

<i>Effective Hyporheic Zone</i> N credit = (Base Rate) (EHZ) (B _f) (H _f) (A _f)					
Baseflow Reduction Factor		Floodplain Height Factor ¹		Aquifer Conductivity	
(B _f)		(H _f)	Reduction Factor ² (A _f)		f)
Perennial baseflow	1.0	0-0.75 ft	1.0	cobbly gravel, gravel, gravelly sand, sand and peat	1.0
Baseflow in all but late summer/fall	0.75	0.76 ft – 1.00 ft	0.75	gravelly silt, silty sand, or loamy sand, sandy loam, and organic silt with no coarse material layer connected to the streambed	0.60
Baseflow in winter/spring	0.50	1.01 ft – 1.25 ft	0.50	clayey gravel, sandy silt, or sandy clay loam, loam, silt loam, and silt with no coarse material layer connected to the streambed	0.40
Baseflow only during wet seasons	0.25	1.26 ft – 1.50 ft	0.10	sandy clay, clay loam, silty clay loam, organic clay with no coarse material layer connected to the streambed	0.10
Flow only during runoff events	0.10	>1.50 ft	0.00	silty clay and clay with no coarse material layer connected to the streambed	0.01

THE RECOMMENDATIONS

Protocol 3

- Replace the "upstream" method of using rainfall-runoff models to determine the annual stream flow that is diverted into the floodplain, with a "downstream" method that uses scaled, representative USGS gauge stations to calculate overbank flow.
- Use updated non-tidal wetland BMP removal rates to determine % efficiency
- Remove the upstream watershed to floodplain surface area ratio reduction.

Develop Regional Flow Duration Curve(s) from Stream Gage Data – 15 Minute Interval

Rehabilitation

¹ as outlined in expanded lit review and recently approved Expert Panel Report(NTW EP, 2020)

² rates are applied to the stream bed and bank load delivered to the project reach (see Table 16 and Appendix H for example). The "upland acres treated" factors from the NTW EP do not apply for Protocol 3.

ENVIRONMENTAL CONSIDERATIONS

- Advisory in nature intended to promote best practices
- > Review of research on potential unintended consequences
- > Outlines best practices for:
 - Design and Siting
 - Construction
 - Post-Construction

TRACKING/REPORTING/VERIFICATION

- No changes to how practice is reported to CBPO
- Guidance provided on some addition records helpful for verification
- New appendix on using CAST to help with Protocol 3 calculation

 Verification based on Group 1 memo (2019)

